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Abstract

Developing taxonomies for psychological assessment is crucial for understanding
long-term human behaviors. However, existing psychometric methods tend to
be nomothetic, lacking individualization, or rely on static cross-sectional data
that overlooks the dynamic nature of psychological processes. We introduce
an idiographic personality Gaussian process (IPGP) framework for time-series
survey data, by leveraging Gaussian process coregionalization to conceptualize
individualized taxonomies and stochastic variational inference for computational
scalability. Through an extensive simulation study against benchmark methods
and an exploratory factor analysis study of life outcomes of personality replication,
we demonstrate that IPGP can simultaneously improve estimation of idiographic
taxonomies and prediction of missing responses. We also assess IPGP using our
IRB-approved data with a forecasting and a leave-one-trait-out prediction task,
illustrating how IPGP identifies unique taxonomies of personality that display
potential in advancing individualized approaches to psychological diagnosis.

1 Introduction

Building standard taxonomies for psychological assessment is crucial to understand long-term
behaviors through repeated quantitative surveys, for instance, emotional stability after medical
treatment or development of academic ability during secondary education [Molenaar, 2004, Wang
et al., 2013, Dumas et al., 2020]. However, existing taxonomies face several limitations. First of all, a
common group of latent concepts is usually constructed for describing a single psychological trait
yet with different causes. For instance, depression is constructed to explaining behavior of people
suffering from numerous syndromes that differ in etiology, symptoms, and biological processes
but get grouped together and called depression [Borsboom et al., 2003, Molenaar, 2004]. Second,
conceptualization of taxonomies tend not to be individualized by assuming (1) the correlation between
latent traits of interest and survey responses are invariant across individuals and (2) the actual structure
of the underlying latent dimensions is fixed across individuals. Lastly, current established taxonomies
are usually developed from cross-sectional data that are collected only once from respondents, and
might overlook the dynamic nature of psychological processes.

To address these limitations, recent work have proposed an idiographic approach that builds com-
pletely distinct taxonomy for everyone [Borkenau and Ostendorf, 1998, Beck and Jackson, 2020,
2021], compared to the nomothetic approach where everyone is described by the same taxonomy.
However, complete personalization may sacrifice general interpretability to clinicians as any possible
population commonality is completely ignored. Another line of research focus on building dynamic
psychometric models with time-series data via item response theory [Rijmen et al., 2003, Reise and
Waller, 2009, Dumas et al., 2020], longitudinal structural equation [Little, 2013, Kim and Willson,
2014, Asparouhov et al., 2018], vectorized autoregression [Lu et al., 2018, Haslbeck et al., 2021] and
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Gaussian process (GP) [Wang et al., 2005, Damianou et al., 2011, Dürichen et al., 2014, Duck-Mayr
et al., 2020]. Yet all these models adopt the nomothetic approach by fixing the same taxonomic
structure across individuals, and hence fail to identify any deviation from subgroups. Furthermore,
there has been attempt to combine approaches for creating individualization while maintaining group
commonality [Beltz et al., 2016], but prioritizes predicting responses to clinical survey batteries at
the expense of studying the latent structures that are the focus of domain researchers.

In this work, we propose an idiographic personality Gaussian process (IPGP) framework for assessing
dynamic psychological taxonomies from time-series survey data, and combine the nomethetic and
idiographic approaches by deploying a common structure for explaining the typical circumstance and
individual structures for permitting deviations into distinct forms. We leverage the Gaussian process
coregionalization model to conceptualize responses of grouped survey batteries, adjusted to non-
Gaussian ordinal data, and utilize IPGP for hypothesis testing of domain theories. Computationally, our
framework also exploits the stochastic variational inference for latent factor estimation, contrasting
with other GP measurement models relying on Gibbs sampling that may not scale efficiently to
intensive longitudinal setups [Dürichen et al., 2014, Duck-Mayr et al., 2020].

To our knowledge, our work is the first multi-task Gaussian process latent variable model for dynamic
idiographic assessment, compared to previous literature focusing on either static setup that ignores
dynamics in latent processes [Borkenau and Ostendorf, 1998, Bonilla et al., 2007, Beck and Jackson,
2021] or single-task approach that disregards inter-battery correlation [Snelson and Ghahramani,
2005, Hensman et al., 2015]. Methodologically, our approach intersects Gaussian process latent
variable model (GPLVM) [Lawrence, 2003], Gaussian process dynamic system (GPDM) [Damianou
et al., 2011, Dürichen et al., 2014] and GP ordinal regression for likert-type survey data [Croasmun
and Ostrom, 2011, Chu and Ghahramani, 2005]. Through an extensive simulation study against
benchmark methods and an exploratory factor analysis study of life outcomes of personality replica-
tion, we demonstrate that IPGP can simultaneously improve estimation of idiographic taxonomies and
prediction of missing responses. We also assess IPGP using our IRB-approved data with a forecast-
ing and a leave-one-trait-out prediction task, illustrating how IPGP identifies unique taxonomies of
personality that display potential in advancing individualized approaches to psychological diagnosis.

2 Backgrounds

We start by laying out the ordinal factor model for building standard taxonomy from survey experi-
ments [Digman, 1997, Baglin, 2014]. We then briefly discuss several existing idiographic longitudinal
models in psychological assessment, and review the model of Gaussian process.

Ordinal factor analysis. Consider the following scenario in survery experiments of i 2 {1, . . . , N}
units repeatedly answering the same set of j 2 {i, . . . , J} batteries over t 2 {1, . . . , T} periods with
ordinal observations yijt 2 {1, . . . , C} up to C levels. For example, the responses could be Likert-
typed, ranging from “strongly disagree” to “strongly agree”. The latent factor model posits that the
jth underlying latent variable f (i)

j (t) for unit i at time t are factored as wT
j xi(t), where xi(t) 2 RK

are unit-level latent factors and wj 2 RK are factor loadings. The f (i)
j (t)s are then mapped to

ordinal responses via an ordered logit model: p
�
yijt = c | f (i)

j (t) = f
�

= �(bc � f) � �(bc�1 � f)
with threshold parameters b0 < · · · < bC . Usually b0 and bC are fixed to �1 and +1 such that
the resulted categorical probability vector sums to 1, while b1, . . . , bC�1 are allowed to move freely.
Stacking xi(t)s, wjs and yijt’s into matrices x, w and tensor y, the joint likelihood can be written
as L(y | x,w) =

Q
i

Q
j

Q
t p

�
yijt | xi(t),wj

�
, while model identification is guaranteed by the

general rule of factor models with additional orthogonality and normalization constraints [Bollen,
1989]. This factor model is also known as item response model [Samejima, 1969, Van der Linden
and Hambleton, 1997], which estimates parameters via maximum likelihood, weighted least squares
or EM algorithm [Bock and Aitkin, 1981, Forero et al., 2009, Li, 2016].

Idiographic longitudinal assessment. In psychological assessment, the idiographic approach
emphasizes intrapersonal variation by requiring distinct loadings w(i)

j , while the nomothetic approach
identifies general interpersonal variation assuming shared factor loadings wjs [Salvatore and Valsiner,
2010]. In terms of data collection, the idiographic approach usually surveys each individual multiple
times (n = 1 and large T ) for learning personalized taxonomy rather than many individuals at a
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Figure 1: Proposed IPGP model for inferring latent factors and factor loadings from dynamic ordinal data.
Input ordinal observations across channels are modeled as ordinal transformations of latent dynamic Gaussian
processes with individualized RBF kernels and loading matrices.

single shot (large n and T = 1). To extract individualized dynamics from time-series data, recent
psychometrics models have utilized longitudinal structural equations by explicitly specifying any
intrapersonal and temporal relation yet sensitive to model mis-specification from domain theory
[Little, 2013, Asparouhov et al., 2018]. Meanwhile, variants of hierarchical vector autoregression
may automatically learn individual diffusion, but usually lack the ordered logit component as built in
response space rather than latent space [Lu et al., 2018, Haslbeck et al., 2021].

Gaussian process. A Gaussian process (GP) can be used to define a distribution over f such
that the evaluation of f at arbitrary subset of X is a joint multivariate Gaussian [Rasmussen and
Williams, 2005]. To determine its mean and covariance, a GP(µ, K) is specified with a mean function
µ : X ! R and a positive-definite kernel function K : X ⇥ X ! R. The most common kernel
is the squared exponential (RBF) kernel K(x1,x2) = exp (� 1

2x1
TPx2) with precision matrix

P = diag(1/`21, . . . , 1/`2d) and d = card(X ). Posterior of a GP is usually analytical for Gaussian
likelihood, but needs to be approximated in modeling latent variables. We discuss the variational
approximation in Sec. (3).

3 Methodology

We propose an idiographic personality Gaussian process (IPGP) framework for assessing individual-
ized dynamic psychological taxonomies from time-series survey data. Instead of joint estimation of
latent factors and their loadings that cannot guarantee rotational and scaling invariance, we marginal-
ize out the latent variables and focus on learning taxonomies of loadings. The overall architecture of
IPGP is illustrated in Figure (1), where input ordinal observations across channels are modeled as
ordinal transformations of latent dynamic GP with individualized RBF kernels and loading matrices.

3.1 Multi-task learning

Typically in psychological assessment, survey questions are meticulously grouped such that each
group gauges a particular facet of personality. Hence, we conceptualize the assessment of psycho-
logical traits as a multi-task learning problem, where each question represents a distinct task but
can be correlated with other tasks. A multi-task GP is an extension of the single-task GP but for
vector-valued functions [Bonilla et al., 2007]. To motivate the multi-task framework, first consider
the two-task scenario with two T ⇥ 1 vector f1(i) and f2

(i) denoting the latent temporal processes of
unit i for question j = 1, 2. To fix the scale of latent factors, a time-level Gaussian process prior is
placed on xi(t) ⇠ GP(0,K(i)

time). Hence, by exploiting affine property of Gaussian, the induced joint
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distribution of vectorized [f1
(i), f2

(i)]T can be written as:

f1

(i)

f2
(i)

�
⇠ GP

⇣ 
0
0

�
,

"
wT

1 w1K
(i)
time wT

1 w2K
(i)
time

wT
2 w1K

(i)
time wT

2 w2K
(i)
time

# ⌘
(1)

whose covariance of shape 2T ⇥ 2T contains four block matrices K(i)
time scaled by different wT

j wj0

(j, j0 2 {1, 2}). Specifically, wT
1 w2 controls the inter-task covariance between these two tasks

and wT
j wjs (j 2 {1, 2}) control their intra-task variance. This multi-task structure is also known

as the linear model of coregionalization (LMC) [Alvarez et al., 2012], where the factor structure
can be recovered from the relations fj(i) = wT

j xi(t) of linear combinations. Compared to vector
autoregression, our GP dynamic system approach can better handle intrapersonal temporal structures.
Now let f (i) = [f1

(i), . . . , fJ
(i)]T represents the flattened JT ⇥ 1 vector consisting of all J tasks. We

write f (i) in a formal multi-task GP notation using Kronecker product ⌦:

p(f (i)) ⇠ GP
�
0,K(i)

task ⌦ K(i)
time

�
(2)

K(i)
task = WT

popWpop + wT
i wi + diag(v) (3)

where K(i)
task denotes the unit-individualized task kernel, consisting of the self inner products of

population loading Wpop = [w1, . . . ,wJ ] for explaining the interpersonal commonality and J ⇥ 1
idiographic loading wi for intrapersonal deviations, as well as a task-dependent noise component
diag(v) = diag([�2

1 , . . . , �
2
J ]). The Kronecker product ⌦ then multiplies each entry in the J ⇥ J

task covariance with K(i)
time, and returns the stacked JT ⇥ JT covariance for f (i). Here we use the

common RBF kernel K(i)
time(t, t

0) = exp
�
� (t � t0)2/`2i

�
to account for dynamic changes in the latent

attributes, whose bandwidth is determined by the unit-specific length scale `i, but any other kernel
can substitute RBF as practitioners see fit.

3.2 Variational learning

Due to the non-Gaussian essence of ordinal likelihood, we adopt the stochastic variational inference
technique (SVI) with inducing points introduced in [Hensman et al., 2015]. Dropping superscript
for demonstration, SVI utilizes a variational distribution q(u) = N (µu,⌃u) on m ⌧ n inducing
variables u to approximate p(f | y) using the conditional p(f | u). Hence, the conditional log
likelihood log p(y | u) can be lower bounded by the expected log likelihood w.r.t. p(f | u), after
exploiting the non-negativity of Kullback–Leibler (KL) divergence between p(f | u) and p(f | y):

log p(y | u) � Ep(f |u) log p(y | f) (4)

Furthermore, a lower bound on model evidence (ELBO) can be obtained by combining Eq. (4) and an
inequality derived by another KL divergence KL[q(u) k p(u | y)] � 0 (see Appendix A for details):

log p(y) � Eq(u)

⇥
log p(y | u)

⇤
� KL[q(u) k p(u)] (5)

� Eq(f)

⇥
log p(y | f)

⇤
� KL[q(u) k p(u)] (6)

where the KL divergence KL[q(u) k p(u)] between the variational q(u) and prior p(u) can be
computed in closed form as both distributions are Gaussians. The expectation of log likelihood
log p(y | f) under the marginal distribution q(f) =

R
p(f | u)q(u)du is intractable but can be

numerically approximated using Gauss-Hermite quadrature method. The variational parameters µu

and ⌃u, individualized loadings wi and diag(v) as well as likelihood parameters {bc}s are then
optimized to maximize this lower bound. Finally, the predictive likelihood of new p(y⇤) =

R
p(y⇤ |

f⇤)p(f⇤ | u)q⇤(u)du is obtained by marginalizing out the optimized q⇤(u).

3.3 Theory testing

Our IPGP framework also naturally facilitates downstream tasks such as domain theory testing
between models with and without shared or idiographic components. We adopt Bayes factor, the
posterior p(Mi | y) = p(y|Mi)p(Mi)P

i p(y|Mi)p(Mi)
over a pool of models {Mi} conditioning on observation y

with prior weights p(Mi), as the hypothesis test on whether the latent structures for each individual
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are indeed distinct or are simply explainable by interpersonal commonality. Specifically, we refer
the multi-task model in Eq. (3) as the idiographic model, and compare it with an nomothetic model
without unit-specific components: Kpop

task = WpopWT
pop + diag(v).

Note that compared to this baseline nomothetic model, our proposed idiographic model in Eq. (3)
introduces extra unit-level Jn loading parameters that enlarges the optimization space of hyperpa-
rameter. Hence, we propose to first learn the interpersonal loading matrix Wpop using the standard
cross-sectional data from a nomothetic model that focuses on learning of population taxonomy, and
then use the estimated Wpop as informative prior in the full model. We will show empirically in Sec.
(4) that with this stronger prior IPGP achieves more precise estimation of individual taxonomies.

4 Experiments

We now evaluate IPGP in learning idiographic latent taxonomies and predicting actual responses
against baseline methods from both psychometrics and Gaussian process literature. We then conduct
an exploratory factor analysis study of life outcomes of personality replication, validating the popular
Big Five personality theory standard using cross-sectional data [McCrae and John, 1992]. The
inferred shared taxonomy structure is further incorporated as the informative prior for the population
kernel in our case study, where we collected IRB-approved longitudinal survey data. We also highlight
the predictive ability of IPGP through a forecasting and a leave-one-trait-out cross validation task, and
illustrate how IPGP identifies unique taxonomies of personality that might advance individualized
approaches to psychological diagnosis and inspire new theory.

4.1 Simulation and ablation

Setup. Our simulation considers longitudinal data of n = 10 units over T = 30 periods. We assume
latent traits of each unit i has dimension K = 5, and each dimension latent vector is generated
independently from a GP x(k)

i (t) ⇠ GP(0,K(i)
time) with unit-specific length scale uniformly randomly

picked from `(i)time 2 [10, 20, 30]. We split m = 20 batteries into K subsets of size m/K = 4, such
that each subset dominates one dimensional in the latent traits. Specifically, we set high value of 3 in
the population factor loading matrix Wpop for entries corresponding to the kth subset for dimension
k, and low values drawn from Unif[�1, 1] otherwise. We also set each unit-specific loading wi from
Unif[�1, 1]. To allow sparsity and reverse coding, we randomly drop half of loadings and flip signs
of the remaining half. Finally, we generate the yijts according to the ordered logit model with C = 5
levels, and apply 80%/20% splitting for training and testing.

Table 1: Comparison of averaged accuracy, log lik and correlation matrix distance between IPGP and baselines
and ablated models in the simulated study. The full IPGP model (indicated in bold) significantly outperforms
all ablated and baseline methods in both estimated correlation matrix and either in-sample or out-of-sample
prediction in paired-t tests. Results from ablations imply that IPGP succeeds in predicting the correct labels
due to its idiographic components and proper likelihood, and a well-informed population kernel is crucial in
recovering the factor loadings. “—” indicates baseline software that cannot handle missing values.

TRAIN ACC " TRAIN LL " TEST ACC " TEST LL " CMD #
GRM 0.261± 0.005 �3.556± 0.092 0.261± 0.006 �3.578± 0.098 0.657± 0.021
GPCM 0.562± 0.017 �2.067± 0.182 0.495± 0.012 �2.409± 0.143 0.545± 0.016
SRM 0.286± 0.006 �7.408± 0.063 0.289± 0.008 �7.341± 0.084 0.300± 0.024
GPDM 0.687 ± 0.010 �4.358± 0.028 0.667 ± 0.010 �4.377± 0.029 0.262± 0.016
DSEM 0.539± 0.021 �0.961± 0.015 — — 0.256± 0.011
TVAR 0.554± 0.018 �1.168± 0.014 — — 0.987± 0.013

IPGP-NOM 0.807 ± 0.007 �0.535± 0.015 0.790 ± 0.008 �0.555± 0.017 0.257± 0.009
IPGP-IND 0.932 ± 0.003 � 0.243 ± 0.008 0.916 ± 0.004 �0.267 ± 0.009 0.530± 0.005
IPGP-LOW 0.897 ± 0.004 �0.313± 0.010 0.884 ± 0.005 �0.334± 0.011 0.397± 0.007
IPGP-NP 0.898 ± 0.003 �0.318± 0.009 0.883 ± 0.005 �0.342± 0.011 0.467± 0.010

IPGP 0.957 ± 0.002 �0.159 ± 0.005 0.942 ± 0.002 �0.184 ± 0.006 0.128 ± 0.006
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Metrics and baselines. We consider two sets of metrics for evaluation: (1) the in-sample and
out-of-sample predictive accuracy (ACC) and log likelihood (LL) of the actual responses, (2) the
correlation matrix distance (CMD) between the estimated factor loading matrix and the true ones,
which is defined for two covariance matrices R1,R2 as d(R1,R2) = 1� tr(R1R1)

kR1kfkR1kf
[Herdin et al.,

2005] with l2 Frobenius norm. Note that CMD becomes zero if R1,R2 are equal up to a scaling factor,
and one if they are orthogonal after flattening. We compare IPGP to (1) various latent variable models
for ordinal responses, including the graded response model (GRM) [Samejima, 1969], the generalized
partial credit model (GPCM) [Muraki, 1992] and the sequential response model (SRM) [Tutz, 1990],
(2) Gaussian process dynamic model (GPDM) [Damianou et al., 2011, Dürichen et al., 2014] where
the continuous predictions are rounded to the nearest ordinal level, (3) dynamic structural equation
model (DSEM) [Asparouhov et al., 2018, McNeish et al., 2023] with trait-dependent latent variables
and (4) time-varying vector autoregression (TVAR) with regularized kernel smoothing [Haslbeck et al.,
2021]. We also compare IPGP with several ablated models: (1) IPGP-NOM without the idiographic
kernel, (2) IPGP-IND without the population kernel, (3) IPGP-LOW with lower-rank factors of 2 than
actual rank of 5 in the synthetic setup and (4) IPGP-NP where the population kernel is learned from
scratch rather than fixed to the informative prior. Note that Wpop in the full IPGP model is fixed as
learned from IPGP-NOM.

Results. We use 100 inducing points and ADAM optimizer of learning rate 0.05 to optimize ELBO
for 10 epoches with batch size of 256. We repeat our simulation with 25 different random seeds
using 300 Intel Xeon 268 CPUs. Table 1 shows comparison of averaged predictive accuracy, log
likelihood and correlation matrix distance between IPGP and baselines and ablated models in the
simulated study. Our IPGP model (indicated in bold) significantly outperforms all ablated models
and baseline methods in estimated correlation matrix, predictive accuracy and log likelihood of both
training and testing sets in paired-t tests. We found that IPGP succeeds in predicting the correct
labels due to its idiographic components and proper likelihood, since IPGP-NOM and IPGP-GL are
two of the worst ablations for all prediction metrics. In addition, IPGP-IND and IPGP-NP have the
worst correlation matrix estimation, implying that a well-informed population kernel is crucial in
recovering the underlying factor structures.

4.2 Exploratory factor analysis

We then validate the popular Big Five personality theory using standard cross-sectional data via
an exploratory factor analysis, where a range of factors are tested and then determined according
to model evidence rather than being fixed. We utilize the life outcomes of personality replication
(LOOPR) data (see [Soto, 2019] for a full description of LOOPR), which is collected from 5, 347 unique
participants on the Big Five Inventory [John et al., 1999] consisting of 60 battery questions. Our
validation considers a range of latent trait dimension counts from K = 1, . . . , 5. For each dimension
count, we first apply principal component analysis (PCA) directly on the correlation matrix of the
cross-sectional observations to learn a vanilla population factor loading matrix. We then initialize
Wpop in our model with this vanilla loading matrix, and optimize the loading matrix jointly with the
variational parameters. Note that T = 1 in LOOPR, so we drop the idiographic components.

Table 2: In-sample accuracy and averaged log lik of our method and baselines for various K in LOOPR. Best
model for each K is indicated in bold and the best model across different Ks is further indicated in italic.

ACC " LL / N "
MODEL K = 1 K = 2 K = 3 K = 4 K = 5 K = 1 K = 2 K = 3 K = 4 K = 5

PCA 0.106 0.099 0.123 0.217 0.192 �1.957 �1.990 �2.009 �2.036 �2.051
GRM 0.238 0.107 0.178 0.113 0.146 �1.838 �1.832 �1.814 �1.838 �1.841
GPCM 0.213 0.156 0.186 0.159 0.163 �1.754 �1.761 �1.764 �1.750 �1.756
SRM 0.243 0.134 0.179 0.125 0.155 �1.784 �1.784 �1.783 �1.780 �1.767
GPDM 0.268 0.272 0.266 0.268 0.263 �2.155 �2.158 �2.158 �2.159 �2.158
DSEM 0.188 0.114 0.110 0.105 0.104 �1.997 �1.960 �1.908 �1.845 �1.775
IPGP 0.322 0.319 0.323 0.318 0.318 �1.478 �1.477 �1.477 �1.477 �1.476
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Figure 2: Illustration of raw correlation matrix (left) and our estimated Big Five loading matrix (right). Both
correlation matrices displace a block pattern, where estimated interpersonal variation show strong correlation
between questions within the same factor of the Big Five personalities and weak correlation across different
factors. Besides, questions corresponding negative emotionality show minor negative correlation with those
corresponding to extraversion and conscientiousness, suggesting trait-by-trait interaction effects.

Validation of Big Five. Table 2 shows the predictive accuracy and averaged log likelihood of our
method and baseline methods (excluding TVAR for lacking low-rank assumption) for various K in
LOOPR. Best model for each K is indicated in bold numbers and the best model across different Ks is
further indicated in italic numbers. Despite having slightly worse in-sample predictive accuracy than
factor 3 model, IPGP with factor 5 has significant higher model evidence than all the other models,
with the second best model is exp(�79) more unlikely indicated by Bayes factors. Therefore, our
results indicate that when psychological measurements are estimated from standard cross-sectional
data, Big Five personality is necessary for learning interpersonal variation.

Estimated interpersonal variation. We also show the raw correlation and our estimated Big Five
correlation in Figure 2. Both correlation matrices display a block pattern, where estimated interper-
sonal variation show strong correlation between questions within the same factor of the Big Five and
weak correlation across different factors. Besides, questions corresponding negative emotionality
show minor negative correlation with those corresponding to extraversion and conscientiousness,
suggesting appropriate trait-by-trait interaction effects.

4.3 Case study

To further demonstrate IPGP in longitudinal setting for learning idiographic psychological taxonomies,
we collected an intensive longitudinal data using experience sampling measures (ESM). We also
highlight the predictive ability of IPGP through a forecasting and a leave-one-trait-out cross valida-
tion task, and illustrate how IPGP identifies unique taxonomies of personality that might advance
individualized approaches to psychological diagnosis and inspire new theory.

Data collection. In ESM design, each participant was asked to complete personality assessments six
times per day for three weeks, resulting maximum 126 assessments per person. With 93 valid student
participants, we acquired 8,770 assessments in total with an average of 94 assessments per person.
The personality assessment is derived from the BFI-2 [Soto and John, 2017] to ensure identification
of latent factors and ample coverage of the late trait space. The BFI-2 includes 60 items with four
unique items assessing each of the three different sub-factors for each Big-Five domains. We removed
one item for each sub-factors that are not appropriate for contextualized assessments of ESM design.
To mitigate the fatigue and learning effect from repeated measures, we employed a planned missing
design where participants were randomly tested on only two out of three items assessing the same
sub-factors, resulting only 30 items for each assessment.
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Comparison between nomothetic and idiographic models. We run the full IPGP model with
idiographic component and unit-specific time kernel on the collected longitudinal data. Again we set
the ranks of the population and individual loading matrices to 5 and 1 respectively, and incorporate
the prior knowledge of the cross-sectional data by fixing the population loadings as the Big Five
loadings estimated in Sec. (4.2) and optimizing the individual loadings. We contrast our proposed
idiographic model (IPGP) and baselines in Table 3, which shows the in-sample prediction, averaged
log likelihood and Bayes factors. We found that IPGP outperforms IPGP-NOM with higher predictive
accuracy and log likelihood, and is favored decisively by a Bayes factor of exp(1.06 ⇥ 104).

Table 3: In-sample prediction and averaged log likeli-
hood of our proposed model (IPGP) and baselines for
the longitudinal data, as well as Bayes factors to IPGP.
“—” indicates self comparison of Bayes factors.

ACC LL/N log(BF)
GRM 0.210 �2.266 �2.32 ⇥ 105

GPCM 0.288 �1.516 �3.80 ⇥ 104

SRM 0.260 �1.927 �1.44 ⇥ 105

GPDM 0.382 �3.865 �7.80 ⇥ 105

DSEM 0.226 �1.399 �7.72 ⇥ 103

TVAR 0.382 �1.546 �4.47 ⇥ 104

IPGP-NOM 0.403 �1.410 �1.06 ⇥ 104

IPGP 0.417 �1.369 —

Figure 3: Predictive accuracy and log lik of IPGP
and IPGP-NOM for the forecasting task and leave-
one-trait-out cross-validation task.

Predictive performance of IPGP. We also evaluate the out-of-sample performance of the id-
iographic and nomothetic models using two prediction tasks: forecasting future responses and
leave-one-trait-out cross validation. For the forecasting task, we train both models with data from the
first 40 days and predict future responses for the last 5 days. For the cross validation task, we predict
responses of each trait by training on data belonging to the other four traits. Figure (3) shows the
predictive accuracy and log likelihood of IPGP and IPGP-NOM for the forecasting task over varying
horizons and the leave-one-trait-out cross-validation task. IPGP has consistently better performance
than IPGP-NOM in both tasks except for being slightly less accurate in predicting extraversion. Overall,
IPGP is favored than IPGP-NOM by Bayes factors of exp(43) and exp(716) in these tasks.
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Figure 4: Four residual correlations as identified by our k-mean clustering. Each heatmap displays the trait-level
residual correlation averaged across corresponding batteries for one cluster, with darker red and blue indicating
larger positive and negative deviations. For instance, agreeableness (A) is more correlated to extraversion (E)
than the population profile in the first profile, but less correlated to openness (O) in the second profile. Moreover,
these two directions of deviations are even exacerbated in the third and fourth profiles.

Discovery of unique taxonomies. Despite our small cohort size (93 respondents), we also manage
to identify distinct profiles of personality that substantially differ from the interpersonal commonality.
Specifically, we first perform a k-mean clustering using all 93 estimated individual correlation matrix
with CMD as the distance metric, and then compute the residual correlation between each estimated
clustering centroid and the population correlation. Figure (4) illustrates four residual correlations
as identified by our k-mean clustering. Each heatmap displays the trait-level residual correlation

8



averaged across corresponding batteries for one cluster, with darker red and blue indicating larger
positive and negative deviations. For instance, agreeableness (A) is more correlated to extraversion
(E) than population profile in the first profile, but less correlated to openness (O) in the second profile.
Moreover, these two directions of deviations are even exacerbated in the third and fourth profiles.

5 Related work

Idiographic assessment emphasizes the important aspects of individuals otherwise missing in
oversimplified taxonomies of psychological behaviors [Hamaker and Dolan, 2009]. Empirical
evidence across many psychometrics fields has shown the lack of generalizability of the nomothetic
models only focusing on interpersonal variation [Molenaar, 2004]. Hence, Song and Ferrer [2012]
incorporated simple random effect method with dynamic factor models for analyzing psychological
processes. Jongerling et al. [2015] proposed a multilevel first-order autoregressive model with random
intercepts to measure daily positive effects over several weeks. Beltz et al. [2016] combined the
nomothetic and idiographic approaches in analyzing clinical data by adding individual components
to the group iterative multiple model (GIMME). However, all of these methods focus on modeling in
response space rather than latent space for ordinal survey data.

Gaussian process latent variable model (GPLVM) is a dimensional reduction method for Gaussian
data, where the latent variables are optimized after integrating out the function mappings [Lawrence,
2003, Lalchand et al., 2022]. Our proposed framework differs from GPLVM as we optimize the factor
loading matrix while marginalizing the latent variables. In addition, our model contrasts GPLVM
and (variational) Gaussian Process dynamical model (GPDM) [Wang et al., 2005, Damianou et al.,
2011] in our non-Gaussian ordered logistic observation model. Finally, our longitudinal framework
with stochastic variational inference learning differs from the static GP item response theory (GPIRT)
[Duck-Mayr et al., 2020] with more computationally demanding Gibbs sampling.

Longitudinal measurement models integrate temporal dynamics into psychological theories with
growing popularity of longitudinal design in survey methods [Jebb et al., 2015, Ariens et al., 2020].
For instance, families of longitudinal structural equation models (SEM) such as multiple-group longi-
tudinal SEM and longitudinal growth curve model were developed for repeated measurement studies
[Little, 2013], where Mplus software was developed later for dynamic SEM with Bayesian Gibbs
sampling [Asparouhov et al., 2018, McNeish et al., 2023]. Dynamic item response models [Rijmen
et al., 2003, Reise and Waller, 2009, Dumas et al., 2020] and time-varying vector autoregressive model
[Lu et al., 2018, Haslbeck et al., 2021] were also proposed to estimate the trajectories of latent traits.
Despite previous work in behavioral literature focusing on Gaussian observations [Dürichen et al.,
2014], multi-task Gaussian process time series has not yet been exploited for survey experiments
with non-Gaussian likelihood when exact inference is not plausible.

6 Conclusion

We propose a novel idiographic personality Gaussian process (IPGP) model for personalized psycho-
logical assessment and learning of intrapersonal taxonomy from longitudinal ordinal survey data, an
under-explored setup in Gaussian process dynamic system literature. We exploit Gaussian process
coregionalization for capturing between-battery structure and stochastic variational inference for
scalable inference. Future directions include adaptation of IPGP to other psychological studies such
as emotion, and incorporation of contextual information such as behaviors or demographics.

Our proposed IPGP framework also provides insights to domain theory testing, in this work, ad-
dressing the substantive debate in psychometrics surrounding the shared versus unique structures of
psychological features. Besides predicting the actual responses, we also include learning of the true
underlying taxonomy structures as evaluation metrics to minimize risks of inductive bias. Our exper-
imental results show that IPGP is decisively favored than the nomothetic baseline, and substantive
deviations from the common trend persist in considerable individuals. Hence, our framework has a
great potential in advancing individualized approaches to psychological diagnosis and treatment.
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A Mathematical Details of Evidence Lower Bound

We provide the full mathematical details of the evidence lower bound defined in Eq. (6). As KL
divergence is always non-negative, we first consider the KL divergence between p(f | u) and p(f | y):

KL[p(f | u) k p(f | y)] = Ep(f |u) log
p(f | u)

p(f | y)
(7)

= Ep(f |u) log
p(f | u)p(y)

p(y | f)p(f)
(8)

= Ep(f |u) log
p(f | u)p(y | u)p(u)

p(y | f)p(f)
(9)

= Ep(f |u) log
p(y | u)

p(y | f) (10)

= log p(y | u) � Ep(f |u) log p(y | f) � 0 (11)

Moving Ep(f |u) log p(y | f) to the R.H.S of the above inequality will lead to Eq. (4). We then exploit
the inequality given by KL[q(u) k p(u | y)] � 0:

KL[q(u) k p(u | y)] = Eq(u) log
q(u)

p(u | y)
(12)

= Eq(u) log
q(u)p(y)

p(y | u)p(u)
(13)

= �Eq(u) log p(y | u) + KL[q(u) k p(u)] + log p(y) � 0 (14)

Rearranging the above inequality, applying Eq. (4) and exploiting notation q(f) =
R

p(f | u)q(u)du
leads to the ELBO:

log p(y) � Eq(u) log p(y | u) � KL[q(u) k p(u)] (15)

= Eq(u)

⇥
Ep(f |u) log p(y | f)

⇤
� KL[q(u) k p(u)] (16)

= Eq(f) log p(y | f) � KL[q(u) k p(u)] (17)
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B Estimated Correlations of Selective Individuals

Figure (5) shows the estimated correlations of selective individuals for the identified four profiles in
the longitudinal study.

S
oc

ia
b.

1
S
oc

ia
b.

4
S
oc

ia
b.

3
A

ss
er

t.
1

A
ss

er
t.
2

A
ss

er
t.
3

E
ne

rg
y.
3

E
ne

rg
y.
1

E
ne

rg
y.
2

C
om

pa
ss

.1
C
om

pa
ss

.2
C
om

pa
ss

.4
R
es

p
ec

t.
1

R
es

p
ec

t.
4

R
es

p
ec

t.
3

T
ru

st
.2

T
ru

st
.1

T
ru

st
.3

O
rg

an
iz

.2
O

rg
an

iz
.1

O
rg

an
iz

.3
P
ro

du
ct

.2
P
ro

du
ct

.3
P
ro

du
ct

.1
R
es

p
on

s.
3

R
es

p
on

s.
2

R
es

p
on

s.
4

A
nx

ie
ty

.3
A

nx
ie

ty
.4

A
nx

ie
ty

.1
D

ep
re

s.
4

D
ep

re
s.
2

D
ep

re
s.
3

V
io

la
t.
2

V
io

la
t.
3

V
io

la
t.
1

C
ur

io
us

.3
C
ur

io
us

.4
C
ur

io
us

.1
A

es
th

.3
A

es
th

.1
A

es
th

.2
C
re

at
iv

.2
C
re

at
iv

.3
C
re

at
iv

.1

Sociab.1
Sociab.4
Sociab.3
Assert.1
Assert.2
Assert.3
Energy.3
Energy.1
Energy.2

Compass.1
Compass.2
Compass.4
Respect.1
Respect.4
Respect.3

Trust.2
Trust.1
Trust.3

Organiz.2
Organiz.1
Organiz.3
Product.2
Product.3
Product.1
Respons.3
Respons.2
Respons.4
Anxiety.3
Anxiety.4
Anxiety.1
Depres.4
Depres.2
Depres.3
Violat.2
Violat.3
Violat.1

Curious.3
Curious.4
Curious.1

Aesth.3
Aesth.1
Aesth.2

Creativ.2
Creativ.3
Creativ.1

� �� �
Extraversion

� �� �
Agreeableness

� �� �
Conscientiousness

� �� �
Negative Emotionality

� �� �
Open-Mindedness

E
xt

ra
ve

rs
io

n
�

��
�

A
gr

ee
ab

le
ne

ss
�

��
�

C
on

sc
ie

nt
io

us
ne

ss
�

��
�

N
eg

at
iv

e
E
m

ot
io

na
lit

y
�

��
�

O
p
en

-M
in

de
dn

es
s

�
��

�

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

S
oc

ia
b.

1
S
oc

ia
b.

4
S
oc

ia
b.

3
A

ss
er

t.
1

A
ss

er
t.
2

A
ss

er
t.
3

E
ne

rg
y.
3

E
ne

rg
y.
1

E
ne

rg
y.
2

C
om

pa
ss

.1
C
om

pa
ss

.2
C
om

pa
ss

.4
R
es

p
ec

t.
1

R
es

p
ec

t.
4

R
es

p
ec

t.
3

T
ru

st
.2

T
ru

st
.1

T
ru

st
.3

O
rg

an
iz

.2
O

rg
an

iz
.1

O
rg

an
iz

.3
P
ro

du
ct

.2
P
ro

du
ct

.3
P
ro

du
ct

.1
R
es

p
on

s.
3

R
es

p
on

s.
2

R
es

p
on

s.
4

A
nx

ie
ty

.3
A

nx
ie

ty
.4

A
nx

ie
ty

.1
D

ep
re

s.
4

D
ep

re
s.
2

D
ep

re
s.
3

V
io

la
t.
2

V
io

la
t.
3

V
io

la
t.
1

C
ur

io
us

.3
C
ur

io
us

.4
C
ur

io
us

.1
A

es
th

.3
A

es
th

.1
A

es
th

.2
C
re

at
iv

.2
C
re

at
iv

.3
C
re

at
iv

.1

Sociab.1
Sociab.4
Sociab.3
Assert.1
Assert.2
Assert.3
Energy.3
Energy.1
Energy.2

Compass.1
Compass.2
Compass.4
Respect.1
Respect.4
Respect.3

Trust.2
Trust.1
Trust.3

Organiz.2
Organiz.1
Organiz.3
Product.2
Product.3
Product.1
Respons.3
Respons.2
Respons.4
Anxiety.3
Anxiety.4
Anxiety.1
Depres.4
Depres.2
Depres.3
Violat.2
Violat.3
Violat.1

Curious.3
Curious.4
Curious.1

Aesth.3
Aesth.1
Aesth.2

Creativ.2
Creativ.3
Creativ.1

� �� �
Extraversion

� �� �
Agreeableness

� �� �
Conscientiousness

� �� �
Negative Emotionality

� �� �
Open-Mindedness

E
xt

ra
ve

rs
io

n
�

��
�

A
gr

ee
ab

le
ne

ss
�

��
�

C
on

sc
ie

nt
io

us
ne

ss
�

��
�

N
eg

at
iv

e
E
m

ot
io

na
lit

y
�

��
�

O
p
en

-M
in

de
dn

es
s

�
��

�

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

S
oc

ia
b.

1
S
oc

ia
b.

4
S
oc

ia
b.

3
A

ss
er

t.
1

A
ss

er
t.
2

A
ss

er
t.
3

E
ne

rg
y.
3

E
ne

rg
y.
1

E
ne

rg
y.
2

C
om

pa
ss

.1
C
om

pa
ss

.2
C
om

pa
ss

.4
R
es

p
ec

t.
1

R
es

p
ec

t.
4

R
es

p
ec

t.
3

T
ru

st
.2

T
ru

st
.1

T
ru

st
.3

O
rg

an
iz

.2
O

rg
an

iz
.1

O
rg

an
iz

.3
P
ro

du
ct

.2
P
ro

du
ct

.3
P
ro

du
ct

.1
R
es

p
on

s.
3

R
es

p
on

s.
2

R
es

p
on

s.
4

A
nx

ie
ty

.3
A

nx
ie

ty
.4

A
nx

ie
ty

.1
D

ep
re

s.
4

D
ep

re
s.
2

D
ep

re
s.
3

V
io

la
t.
2

V
io

la
t.
3

V
io

la
t.
1

C
ur

io
us

.3
C
ur

io
us

.4
C
ur

io
us

.1
A

es
th

.3
A

es
th

.1
A

es
th

.2
C
re

at
iv

.2
C
re

at
iv

.3
C
re

at
iv

.1

Sociab.1
Sociab.4
Sociab.3
Assert.1
Assert.2
Assert.3
Energy.3
Energy.1
Energy.2

Compass.1
Compass.2
Compass.4
Respect.1
Respect.4
Respect.3

Trust.2
Trust.1
Trust.3

Organiz.2
Organiz.1
Organiz.3
Product.2
Product.3
Product.1
Respons.3
Respons.2
Respons.4
Anxiety.3
Anxiety.4
Anxiety.1
Depres.4
Depres.2
Depres.3
Violat.2
Violat.3
Violat.1

Curious.3
Curious.4
Curious.1

Aesth.3
Aesth.1
Aesth.2

Creativ.2
Creativ.3
Creativ.1

� �� �
Extraversion

� �� �
Agreeableness

� �� �
Conscientiousness

� �� �
Negative Emotionality

� �� �
Open-Mindedness

E
xt

ra
ve

rs
io

n
�

��
�

A
gr

ee
ab

le
ne

ss
�

��
�

C
on

sc
ie

nt
io

us
ne

ss
�

��
�

N
eg

at
iv

e
E
m

ot
io

na
lit

y
�

��
�

O
p
en

-M
in

de
dn

es
s

�
��

�

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

S
oc

ia
b.

1
S
oc

ia
b.

4
S
oc

ia
b.

3
A

ss
er

t.
1

A
ss

er
t.
2

A
ss

er
t.
3

E
ne

rg
y.
3

E
ne

rg
y.
1

E
ne

rg
y.
2

C
om

pa
ss

.1
C
om

pa
ss

.2
C
om

pa
ss

.4
R
es

p
ec

t.
1

R
es

p
ec

t.
4

R
es

p
ec

t.
3

T
ru

st
.2

T
ru

st
.1

T
ru

st
.3

O
rg

an
iz

.2
O

rg
an

iz
.1

O
rg

an
iz

.3
P
ro

du
ct

.2
P
ro

du
ct

.3
P
ro

du
ct

.1
R
es

p
on

s.
3

R
es

p
on

s.
2

R
es

p
on

s.
4

A
nx

ie
ty

.3
A

nx
ie

ty
.4

A
nx

ie
ty

.1
D

ep
re

s.
4

D
ep

re
s.
2

D
ep

re
s.
3

V
io

la
t.
2

V
io

la
t.
3

V
io

la
t.
1

C
ur

io
us

.3
C
ur

io
us

.4
C
ur

io
us

.1
A

es
th

.3
A

es
th

.1
A

es
th

.2
C
re

at
iv

.2
C
re

at
iv

.3
C
re

at
iv

.1

Sociab.1
Sociab.4
Sociab.3
Assert.1
Assert.2
Assert.3
Energy.3
Energy.1
Energy.2

Compass.1
Compass.2
Compass.4
Respect.1
Respect.4
Respect.3

Trust.2
Trust.1
Trust.3

Organiz.2
Organiz.1
Organiz.3
Product.2
Product.3
Product.1
Respons.3
Respons.2
Respons.4
Anxiety.3
Anxiety.4
Anxiety.1
Depres.4
Depres.2
Depres.3
Violat.2
Violat.3
Violat.1

Curious.3
Curious.4
Curious.1

Aesth.3
Aesth.1
Aesth.2

Creativ.2
Creativ.3
Creativ.1

� �� �
Extraversion

� �� �
Agreeableness

� �� �
Conscientiousness

� �� �
Negative Emotionality

� �� �
Open-Mindedness

E
xt

ra
ve

rs
io

n
�

��
�

A
gr

ee
ab

le
ne

ss
�

��
�

C
on

sc
ie

nt
io

us
ne

ss
�

��
�

N
eg

at
iv

e
E
m

ot
io

na
lit

y
�

��
�

O
p
en

-M
in

de
dn

es
s

�
��

�

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

Figure 5: Estimated correlations of selective individuals for the identified four profiles in the longitudinal study.
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