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Abstract

Social scientists are often interested in using
ordinal indicators to estimate latent traits
that change over time. Frequently, this is
done with item response theoretic (IRT) mod-
els that describe the relationship between
those latent traits and observed indicators.
We combine recent advances in Bayesian non-
parametric IRT, which makes minimal as-
sumptions on shapes of item response func-
tions, and Gaussian process time series meth-
ods to capture dynamic structures in latent
traits from longitudinal observations. We
propose a generalized dynamic Gaussian pro-
cess item response theory model (GD-GPIRT)
as well as a Markov chain Monte Carlo sam-
pling algorithm for estimation of both latent
traits and response functions. We evaluate
GD-GPIRT in simulation studies against base-
lines in dynamic IRT, and apply it to var-
ious substantive studies, including assessing
public opinions on economy environment and
congressional ideology leaning on abortion.

1 INTRODUCTION

How do the issue positions of the Congress evolve over
time? Is there growing dissatisfaction with the econ-
omy after recessions? Are patients emotionally stable
after psychological therapies? Answering these ques-
tions requires dynamic measures of traits or attitudes.
Since self-reported ratings are known to be sensitive to
individual variances and inconsistency (Wilcox et al.,
1989), social scientists rely on latent trait models,
where the latent variable of interest is inferred from
a collection of noisy categorical indicators such as sur-
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vey responses, voting outcomes or event counts.

However, analyzing how these traits change over time
in practice introduces two problems. First, researchers
must ensure that the inferred latent traits are compa-
rable over time. It is widely understood that failure
to do so can result in misleading or even nonsensical
inferences (Bollen, 1980), and this problem is particu-
larly difficult when we do not have repeated observa-
tions of the same items. Second, scholars must make
model assumptions about the functional relationship
between the latent traits and observed indicators. In
practice, the assumed function form is typically fairly
restrictive (e.g., generalized linear models), which can
lead to biased or inefficient estimates when the real
data fail to match the models’ assumptions.

In this work, we propose a novel dynamic Gaussian
process latent variable model based on item response
theory (GD-GPIRT) for longitudinal and ordinal obser-
vations. While item response theory has seen applica-
tions in machine learning area such as predicting user
preference in recommendation systems (Chen et al.,
2005; Baylari and Montazer, 2009) students’ answer in
educational testing (Bergner et al., 2012; Cheng et al.,
2019; Park et al., 2023) and evaluating different ma-
chine learning methods (Lalor et al., 2016; Martinez-
Plumed et al., 2019), we focus on estimation of latent
traits. We exploit recent advances in Bayesian non-
parametric IRT with Gaussian process priors for flex-
ibly modeling the response functions, and Gaussian
process time series methods to capture dynamic struc-
tures in latent traits while maintaining measurement
comparability. We also propose an efficient Markov
chain Monte Carlo sampling algorithm, whose effec-
tiveness is demonstrated in simulation studies. Finally,
we apply GD-GPIRT to substantive studies: assessing
public opinions on economy environment and congres-
sional ideology leaning on abortion.

Our model makes two contributions to the field. First,
it extends recent advances in Bayesian nonparametric
models of latent traits to ordered categorical indica-
tors. The existing models in this family are limited
to continuous (Lawrence, 2003) or binary (Duck-Mayr
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et al., 2020) indicators. However, in fields such as
psychology or survey research, ordered-categorical re-
sponses are much more common. Other standard tools
for ordered categorical responses assume strict para-
metric functional forms for the item response functions
(IrFs) (Roberts et al., 2000; Duck-Mayr and Mont-
gomery, 2022), strict monotonicity (Molenaar, 1997;
Van der Ark, 2007), or both (Mokken, 1971). In con-
trast, GD-GPIRT offers a compromise, allowing flexibil-
ity in specification of prior structures to control the
shapes (e.g., non-monotonic, asymmetric) of IRFs .

Second, GD-GPIRT provides a natural way to encode
dynamics in the latent traits. Instead of estimating la-
tent variables at different time periods independently,
GD-GPIRT models the trajectory of each unit jointly
through time using latent space models with dynamic
structures. Some existing IRT-like models also allow la-
tent traits to move over time, by assuming these trends
are low-order polynomials (Poole and Rosenthal, 2001;
Bailey, 2007; Proust-Lima et al., 2022) or realizations
of a Wiener process (Martin and Quinn, 2002; Wang
et al., 2013; Schnakenberg and Fariss, 2014; Chung
et al.,, 2015). While the former can be far too re-
strictive, the latter may face a variance explosion is-
sue in prediction due to their non-stationary nature.
For example, the well-known Martin—Quinn scores for
Supreme Court ideology can lead to extreme scores for
justices at the ending of their careers due to this unbal-
anced model structure (Martin and Quinn, 2002). Al-
ternatively, GD-GPIRT encodes the reasonable expecta-
tion that the latent trends are centered and stationary
a priori, with hyperparameters controlling the band-
width of variation in time and latent space.

In summary, to the best of our knowledge, GD-GPIRT
is the first dynamic Bayesian non-parametric measure-
ment model in the literature appropriate for categor-
ical indicators. GD-GPIRT offers a method where or-
dinal indicators are used to estimate dynamic latent
traits over time while making minimal assumptions
about the IRF shapes. In addition, the GP priors on
the time trends offer a balanced structure for inferring
their dynamics, reducing the risk of poor identification
due to scaling variance (Jackman, 2001). As shown in
our experiments, GD-GPIRT estimates are superior in
terms of model fit and measurement quality.

2 RELATED WORK

Item response theory (IRT) is a popular measure-
ment framework in social science studies, such as com-
puterized adaptive testing (Xu and Douglas, 2006),
survey experiments (Muraki, 1990; Olino et al., 2012),
and political ideology scaling (Poole and Rosenthal,
2000, 2001; Bafumi et al., 2005). Classic static and

binary IRT methods usually rely on parametric as-
sumptions for shapes of IRFs, including logistic rela-
tion (2PL and 3PL) for monotonic and symmetric IRFs
(Molenaar, 1997; Mokken, 1971), graded unfolding
structure for non-monotonicity (Roberts et al., 2000),
and logistic positive exponential family for asymmetry
(Samejima, 2000). Non-parametric IRT (NIRT) such
as Mokken scaling (Mokken, 1971), monotone uni-
dimensional model (Holland and Rosenbaum, 1986),
and dimensionality assessment model (Stout, 1987)
has emerged to address potential mismodeling in para-
metric IRT (Junker and Sijtsma, 2001). In addition,
machine learning-based IRT (Chen et al., 2019; Cheng
et al., 2019; Nguyen and Zhang, 2022) have also been
developed but focusing on response prediction, and not
yet been applied to dynamic IRT. Recently, Duck-Mayr
et al. (2020) introduced a Bayesian non-parametric
Gaussian process IRT to study voting patterns of the
U.S. Congress, which relaxes the common monotonic-
ity assumption in NIRT. There are also parametric
IRT models for ordered-categorical responses, including
graded response model (Samejima, 1997), graded un-
folding models (Roberts and Laughlin, 1996; Roberts
et al., 2000), generalized partial credit model (Muraki,
1992) and more (Agresti, 2003; Zumbo et al., 2007;
Van Schuur, 2011; Bacci et al., 2014), but none have
enjoyed the modeling flexibility of NIRT.

Dynamic latent variable models were combined
with IRT to accommodate temporal shifts in latent
traits. In political science, Poole and Rosenthal (1985)
proposed an ideal-point spatial model (NOMINATE) for
scaling congressional roll-call votes. Their model has
been extensively used in studies of Congress, and was
later extended to analyze ideological trends over mul-
tiple sessions by either assuming a simple polynomial
time series model (Poole and Rosenthal, 2000) or es-
timating each session separately (Nokken and Poole,
2004). In legal studies, Martin and Quinn (2002) pro-
posed a dynamic Bayesian measurement model (D-IRT)
based on Bayesian random walk priors to study case
dispositions of the U.S. Supreme Court, which was
extended to ordinal responses by Schnakenberg and
Fariss (2014) to study governmental respects of human
rights. In educational research, Wang et al. (2013)
applied dynamic linear models to IRT for computer-
ized adaptive testing. There are other latent variable
models for analyzing longitudinal panel data, such as
the growth curve model (Rogosa et al., 1982; Curran
and Hussong, 2003; Masyn et al., 2014) and autore-
gressive latent trajectory model (Bollen and Curran,
2004; Hamaker, 2005; Bollen and Zimmer, 2010), but
these methods limit their modeling of latent traits to
either strict linearity (Rogosa et al., 1982; Poole and
Rosenthal, 2001; Hamaker, 2005; Bollen and Zimmer,
2010; Wang et al., 2013) or non-smooth autoregression
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(Martin and Quinn, 2002; Bollen and Curran, 2004;
Hamaker, 2005; Bollen and Zimmer, 2010; Schnaken-
berg and Fariss, 2014) with strong assumptions.

Gaussian Process latent variable model (GPLVM)
is a family of algorithms that summarizes high-
dimensional data into low-dimensional embeddings
(Lawrence, 2003; Lawrence and Hyvérinen, 2005), and
has found applications for data visualization (Jiang
et al., 2012), manifold learning (Urtasun and Dar-
rell, 2007; Titsias and Lawrence, 2010; Gao et al.,
2010) and modeling dynamic systems (Wang et al.,
2005; Lawrence and Moore, 2007; Damianou et al.,
2011). However, directly applying GPLVMS to IRT is
not appropriate because GPLVM usually marginalizes
out the mappings and optimizes the latent variables
(Lawrence and Hyvérinen, 2005), while IRT requires
posterior inference of both. Previous attempts of im-
proving GPLVM for static IRT include Urtasun and Dar-
rell (2007) and Duck-Mayr et al. (2020), but significant
research gap still persists in exploiting GPLVM for dy-
namic IRT with ordinal responses.

3 PROBLEM STATEMENT

Our statement of problem starts with stationary item
response theory with ordinal responses, and then dy-
namic IRT in the longitudinal setting.

3.1 Stationary Item Response Theory

Consider the case of n respondents answering m dif-
ferent items, where response y;; (i = 1,...,n,j =
1,...,m) of the ith respondent and jth item belongs to
an ordered category set )V; = {1,2,...,C;} with total
C; levels. For example, all C; will be 5 in the five-level
Likert scale (Likert, 1932), where respondents may
choose from “strongly (dis)agree”, “(dis)agree” and
“neutral”. Item response theory states that the like-
lihood of observing ¥;; is jointly determined by some
respondent-level latent trait or ability score z; € X
and item-level response function (IRF) f; : X — Y.
For now we focus on the unidimensional latent space
X = R, leaving higher dimensional X as future work.
Dropping subscripts momentarily, the likelihood of ob-
serving level ¢ is modeled as an ordered logistic with
discrimination and difficulty parameter 5, and By:

B=1[Bo,A"; fl@;8)=pz+Bo (1)
ply=cl| f,{bc}) = Plbe—1 — f) = ®(b. — f) (2)

where ®(z) represents the cumulative density function
of a standard normal. In addition, the latent func-
tion space is subset into C intervals, whose end points
are denoted by C' + 1 ordered threshold parameters
by < by < --+ < be. The interval (b.—1,b.] on which

the value of the function falls represents the range
for the cth category. While by = —oo and be = oo
are fixed, b; to bo_1 can move freely under the or-
dered constraint. Intuitively, these {b.}s control the
shape of the categorical likelihood given latent func-
tion value. Note that all Bs and {b.}s can be fur-
ther indexed by j to represent their dependency on
items, and determined by maximizing the joint likeli-

hood TT, TT; p(vij | fi(zi;8;), {bjc})-
3.2 Dynamic Item Response Theory

In the longitudinal setting, respondents repeatedly an-
swer potentially different sets of questions over multi-
ple time periods, for instance, members of congress
voting for different roll calls from session to session.
Hence, dynamic structures in latent traits need to be
accommodated for possible changes over repeated ob-
servations. For exposition, we assume items are differ-
ent across time, as static items are special cases. We
append an additional index for time ¢ to the latent
trait z;; and IRF fj¢, as well as its parameters 3.

Some prior work simply estimates x;; separately for
each time period, known as NOKKEN—POOLE scores in
the application of ideology of Congress. For the same
application, some adopt a polynomial structure for the
dynamic latent traits x;; ~ poly(¢) and found that lin-
ear model is sufficient for capturing the majority of
changes in the dynamic latent positions (Poole and
Rosenthal, 2001; Bailey, 2007). Other works rely on
Bayesian non-parametric methods for modeling non-
polynomial latent traits (Martin and Quinn, 2002;
Wang et al., 2013; Schnakenberg and Fariss, 2014).
Broadly speaking, these non-parametric methods uti-
lize the autoregressive (AR) model, which simplifies the
inference of the whole dynamic trait trajectory to that
at a single time period based on an informative prior:

zi1 ~ N(0,C) (3)
wig~ N(wigo1,07), ¥V t=2,...T  (4)

where N(0, C;) is the anchoring prior for the dynamic
trait trajectory at time ¢ = 1 and o7 is the diffu-
sion variance. However, these AR models may en-
counter variance explosion as the prior variances accu-
mulate through the diffusion terms over time, leading
to possible overestimation of extremity in later peri-
ods (Martin and Quinn, 2002). While one may mul-

tiply 1/1 — UC—? to x;+—1 to enforce variance balance,
information of earlier observations summarized in the
prior is discounted. In addition, the implicit Markov
assumption impedes utilizing information from future
observations in estimating current z; ;, as future traits
are not represented in the prior. Finally, AR trajecto-
ries tend to be rough and not well-suited to applica-
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tions preferring smoother trends.

4 PROPOSED MODEL

In this section, we present a novel Bayesian approach
for dynamic item response theory with ordinal re-
sponses. We leverage recent advances in Bayesian non-
parametric IRT based on Gaussian process for infer-
ring IRFs with flexible shapes, and propose a Gaussian
process time series model for joint estimation of dy-
namic latent traits over time with balanced priors. As
a Bayesian method, our model welcomes integration
of any prior knowledge such as asymmetry and non-
monotonicity to IRFs, or smoothness to the latent trait
trends. We refer our model as generalized dynamic
Gaussian process item response theory (GD-GPIRT).

4.1 Generalized Dynamic Gaussian Process
Item Response Theory

Contrary to parametric approaches, Gaussian Process
item response theory (GPIRT) makes minimal assump-
tions about the shape of IRFs except smoothness, so as
to infer non-monotonicity or asymmetry (Duck-Mayr
et al., 2020). Gaussian process (GP) is widely used for
modeling distributions over functions, such that any
realization of functional values has a joint Gaussian
distribution. Specifically, GPIRT places a hierarchical
GP prior on each latent f;;:

p(fit) ~ GP (e, Kz) (5)
pie(x) = Bjnz + Bjwo (6)
Ky(z,2") = exp(—§(x — 2/)?/£2) (7)
Bjtn ~N(0,03,) (8)

Bjto ~ N (0,03,) (9)

where each latent function contains an item-specific
linear trend pj.(-) and a non-linear deviation with a
prior GP(0, K). The slope and intercepts Bs in ;¢ (-)
have zero-mean normal priors with variance Ugl and
O’%O. The £, parameter is the length scale of the kernel

controlling the bandwidth of correlations.

To accommodate dynamic latent traits, we also place
independent GP priors on individual trait vector x; =
[%i1,...,7;7]T. Here we use zero mean functions and
Matérn kernel of degree 5/2 to model moderately
smooth (twice differentiable) trajectories with length
scale ;. Compared to the AR model discussed in Sec.
3.2, our GP model ensures measurement comparability
as each entry in the dynamic latent trends will have the

same marginal prior distribution as a standard normal.

P({Xz}) = HP(Xi) (10)

p(xi) ~ GP(0,Ky) (11)

Vbd  5d? V5d
7, ‘*‘37%)%10(_ 7, ) (12)

Ky(d) = (1+

The last set of parameters is the threshold param-
eters. Following the reparameterization trick (Chu
and Ghahramani, 2005), we define a set of positive
padding variables A; > 0 and [ = 2,...,C — 1
such that b, = by + chzz A;. We place indepen-
dent standard normal prior on the log scale of the
padding variables: log(A;) ~ N(0,03%). Note this is
equivalently to placing normal priors on log scale of

b1, by —b1,...,bc—1 —bo_2.

4.2 Model Inference

In contrast to GPLVM models, GD-GPIRT places equal
emphasis on the latent variables and mapping func-
tions, whereas GPLVM models typically marginalize ei-
ther of these components. Therefore, we propose a
Markov chain Monte Carlo (MCMC) sampling proce-
dure for both latent variables and IRFs. Specifically,
our model parameters include all latent function val-
ues £; = [fijt, ..., [nje]", ability scores x;, slope and
intercept parameters {3,,} and threshold parameters
{b.} with the following joint posterior distribution:

p({xi} £}, {be}, {80} | {wige}) o HP(Xi)

latent trait prior

JIRNECDI Hp(ﬁjtl) 11 Hp(ﬁjw) [Ire)

t g

IRF prior slope prior

HHHP({yijt} [ {xibs {fje} {be} {850})  (13)

J

intercept prior threshold prior

likelihood

This joint posterior is highly multivariate, which
makes direct sampling difficult. Hence, we proceed in
a Gibbs sampling fashion. Let superscripts k& denote
the kth iteration in the McMC sampler. The sampler
is initialized by drawing {XZ(-O)}S, {ﬂ;g)}s and {bgo)}s
from their respective priors, and drawing the latent
function values {f;? )}s from the induced multivariate

(0)

Gaussian at all n initial locations x; " at time t:

0 0) (0 0). 4(0 0) (0
p(ER [ %" 1) ~ GP (e (<" B Ko (x; %x(& >>))
14
After initialization, we alternatively sample each vari-
able in the targeted joint distribution in Eq. (13) from
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its conditioning distribution on all the other variables.
First, the sampler draws new latent function values by
conditioning on all {y;;}s:

k+1 k k
p(fj(t-i_ ) |XE )7{yijt}7/6§'t)v{b£k)}) X
k+1 k k k+1
p(EED | <M 8% p(fyage} | £, p81)  (15)

As @GP regression allows no analytical form for non-
Gaussian likelihood, we exploit eclipse slice sampling
(Ess) (Murray et al., 2010) for the conditional dis-
tributions. Eclipse slice sampling is a generic sam-
pler for posterior of arbitrary target variable z with a
Gaussian prior z ~ N (p, X) and a likelihood function
L(z), and more efficient than the traditional Metropo-
lis-Hastings stepping. ESS samples the next itera-
tion by adaptively performing slicing sampling on the
eclipse defined by current state z and a random draw v
from prior N'(p, X) (see Supplement for details). The
prior mean pi;, covariance Xy and likelihood L(fjs) for
fj(fﬂ)

sampling are defined as:

= (i 8Y), By = Ko (x" %) (16)
L(fj) = Hp({yijt} | %0, { fije} {0}, Bye)  (17)

After obtaining fj(f g for all items at all time peri-

ods, we then sample the latent trait xEkH)s. How-

ever, direct sampling from the conditional distribu-
tion of xgkﬂ) is not obvious, because the likelihood
of locations is not defined by f;;s at points other than
xgkﬂ)s. Hence, we introduce a set of auxiliary vari-
ables £, which are the latent functions values defined
on an evenly-spaced dense grid x* from —5 to 5 in one-
hundred increment. Samples of f; can be obtained
by applying GP posterior update rule, conditioning on

(k) (k+1)

. . k
current location x; s and function value f;; g

p(E5Y) ~ gP(p*, K) (18)
V=K, (X,Ek),xgk)) (19)
pt = K (x*, x ) vy (20)

K=K, (X*,x*) - K, (x*,xgk))Vfle (xgk),x*)
(21)

With these auxiliary variables f7;, we obtain a dense

approximation of likelihood values for all latent loca-

(k)

tions besides x; '. We construct mean p,,, covariance

(k+1) as:

)

3., and likelihood £(x;) for sampling x

p, =0, ¥, =K (x® x") (22)

£(x) = [TTT p(wese | %o {63 (b3 By) - (23)

J

Note the latent trait location samples are rounded to
the nearest rug in the dense grid x*. We then up-
date the latent function values f;fﬂ) to those f*§1;+1)

(k+1)

defined on new x; . Finally, we sample new slope

and intercept parameters {ﬂgfﬂ)}s and threshold pa-

rameters {b£k+1)}s using ESS, based on the new latent

k+1 k+1
(k+1) fj(t ).

locations x; and updated function values

Our inference procedure can also be further adjusted
when the latent item function fj;s come from the same
set of items, meaning f;; = --- = f;; = f; for all js.
Now inference of f; need to condition on all nT" latent
traits {z;}s and corresponding observations {y;;:}s,
making sampling of auxiliary £* ;s computationally de-
manding. Hence, we exploit a sparse GP trick that
selects 100 inducing locations on the dense grid whose
inducing values are determined by its k-nearest neigh-
bors. In our exploration, we found notable speed-up
when nT =~ 6,000 but no performance lost.

5 EXPERIMENTS

We evaluate the measurement quality of GD-GPIRT in
simulation studies, and then illustrate the advantages
of GD-GPIRT in model fit with two real-world case stud-
ies regarding public opinions on economic environment
and congressional ideology leaning on abortion issues.

5.1 Simulation Studies

Data generating process. The simulation consists
of 100 synthetic respondents and 10 items over 10 time
periods. We consider a variety of scenarios with binary
(C = 2) or ordinal (C' = 5) responses and whether
the same or different set(s) of items are used across
time. The latent trait vectors are drawn i.i.d from the
zero-mean GP defined in Eq. (11) with ¢, = 5, and
the 1RFs from the GP in Eq. (7) with ¢, = 1 and
O’%l = ‘7%1 = 1. We also draw {b.}s from Unif[—2, 2],
and demean, normalize and sort {b.}s to ensure all
ordinal responses have non-zero probabilities. Finally,
we generate noisy responses ¥;; from the probabilistic
model defined in Eq. (2).

Baselines and metrics. We compare GD-GPIRT to
several time-series baselines in dynamic IRT literature:
1) a naive method that estimates each time period sep-
arately (N-GPIRT); 2) a linear trend method without
non-linear deviation(L-GPIRT) ; and 3) the dynamic or-
dinal IRT (DO-IRT) model with AR trends (Schnaken-
berg and Fariss, 2014). We also consider three sets
of metrics for evaluating measurement quality of esti-
mated latent traits and IRFs as well as predictive fit of
responses: 1) the averaged correlation and log likeli-
hood of the estimated traits w.r.t the ground truth;
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Table 1: Comparison of measurement quality and predictive fit between GD-GPIRT and baselines under various
synthetic settings. Bold numbers indicate statistical significance compared to the other methods using standard
paired t-tests and italicized numbers indicate the method is not statistically worse than the best method.

Binary Response (C' = 2)
Same set of IRFs Different sets of IRFs
MEASURE GD-GPIRT L-GPIRT N-GPIRT DO-IRT GD-GPIRT L-GPIRT N-GPIRT DO-IRT
COR(X, X) 0.949+0.003 0.571+0.043 0.692+0.036 0.88740.004 0.961+0.005 0.878+0.005 0.855+0.005 0.896+0.003
LL(x,%X) —0.778+0.069 —1.732+0.056 —1.232+£0.037 —1.4414+0.057 —0.5744+0.327 —3.902+£0.202 —0.763+0.037 —1.287+0.029
cor(ICC) 0.884+0.014 0.612+0.022 0.735+0.027 0.8314+0.015 0.915+0.004 0.89140.005 0.877+0.005 0.825+0.005
RMSE(ICC) 0.116+0.003 0.270£0.005 0.226+0.007 0.146+£0.004 0.089+0.003 0.102+0.003 0.103£0.003 0.148+0.002
Acc(y, ) 0.806£0.003 0.77440.002 0.818+0.003 0.754+0.003 0.794+0.006 0.674£0.009 0.708+0.010 0.751+0.007
LL(y,y) —1.381+£0.060 —1.223+0.051 —1.353+0.054 —1.762+£0.087 —1.235 £0.086 —3.376+£0.524  —1.014+0.062 —1.919+0.171
Ordinal Response (C' = 5)
Same set of IRFs Different sets of IRFs
MEASURE GD-GPIRT L-GPIRT N-GPIRT DO-IRT GD-GPIRT L-GPIRT N-GPIRT DO-IRT
COR(x X) 0.968+0.002 0.658+0.045 0.637+0.041 0.91340.004 0.981+0.002 0.86740.008 0.927+0.004 0.920+0.002
LL(x,%X) —0.834+0.085 —1.730+0.050 —1.278+0.039 —1.797+0.142 —1.879+0.864 —11.62+£1.436 —0.452+0.055 —1.461+0.067
COR(ICC) 0.899+0.008 0.649+0.022 0.677+0.028 0.83340.015 0.940+0.003 0.8434+0.018 0.924+0.004 0.805+0.004
RMSE(ICC) 0.401+0.012 0.91440.018 0.846+0.023 0.440+0.012 0.262+0.012 0.444+0.035 0.272£0.008 0.449+0.006
Acc(y, ) 0.507£0.004 0.47540.004 0.51740.004 0.424+0.004 0.455+0.011 0.248+0.008 0.285+0.011 0.418+0.008
LL(y, J) —2.977 £0.049 —2.596+0.042 —2.966+0.047 —4.674+0.102 —2.506 £0.101 —2.527+0.326  —2.220+0.118 —4.981+0.235

2) the correlation and RMSE of item characteristics
curves (ICC), or the expected response given attribute
ICC(z; f,b) = E[y | f, b, z]; 3) the predictive accuracy
AcC(y, §) and log likelihood LL(y, ) of responses.

Results. We split data into 80%/20% for training
and testing. We repeat each simulation setting using
25 different seeds approximately 300 Intel Xeon 268
CPUs. For each run, we simulate three MCMC chains
with 500 burnout steps and 500 sampling iterations,
thinned every four samples. The averaged R-hat diag-
nostics for all variables are below 1.1 in all runs. Ta-
ble 1 shows comparison of measurement quality and
predictive fit between GD-GPIRT and baselines under
various synthetic settings. Bold numbers indicate sta-
tistical significance compared to the other methods us-
ing standard paired t-tests and italicized numbers in-
dicate the method is not statistically worse than the
best method. Overall, our results consistently demon-
strate the superiority of GD-GPIRT over the baseline
methods in terms of the measurement quality of esti-
mated traits and IRFs across all experimental condi-
tions, while predicting no worse the (noisy) responses.

5.2 Public Opinions on Economy

The American Panel Survey (TAPS) was a long-running
research project to study public opinions from all 50
states and included an extensive array of survey items
asked across multiple waves.! Specifically, respondents
were asked questions monthly from Jan. 2014 to Jan.
2018 about their opinions on the economic conditions

LraPs is conducted by Weidenbaum Center at Washing-
ton University in St. Louis.

Economic Confidene

Jan 2014

and income allocation (either to spend or to save) of
their households and the country as a whole. Since the
same set of questions were repeatedly asked, we apply
GD-GPIRT with sparse GP speedup to estimate people’s
financial status and how they react to those questions.
We set £, = 12 to capture yearly shifts in attitudes.

|

Announcement of Trmfl's ehndidacy |

Presidential election

Jul 2014 Jan 2015 Jul 2015 Jan 2016 Jul 2016 Jan 2017

Figure 1: Tllustration of public opinion trends in economic
confidence. The grey lines represent individual confidence
levels estimated using GD-GPIRT, while the bold blue and
red lines depict the average confidence levels for Democrats
and Republicans respectively. Vertical dashed lines mark
key events such as the announcement of Trump’s candidacy
and the 2016 Presidential election. Notably, Democrats
levels have remained relatively stable, while Republicans
exhibited a slight increase in confidence leading up to and
especially following the election of President Trump.

Figure 1 illustrates public opinion trends in economic
confidence. The grey lines represent individual confi-
dence levels estimated using GD-GPIRT, while the bold
blue and red lines depict the average confidence levels
among Democrats and Republicans groups. Vertical
dashed lines mark key events such as the announce-
ment of Trump’s candidacy and the 2016 Presidential
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Figure 2: The upper panel illustrates the alignment between senators’ estimated ideology and their party affiliations
(’polarization ratio’) on abortion issues using GD-GPIRT. The increase in the ratio from the 92nd Congress (0.521) to the
108th Congress (0.950) indicates the growing partisan divide on abortion. The lower panel displays GD-GPIRT scores by
party spaced every two sessions, with Dem. and Rep. Senators in blue and red, respectively. Dashed lines represent the

evolving ideological trajectories of selected senators.

election. Notably, the Democrats’ confidence levels re-
mained relatively stable, while Republicans exhibited
a slight increase in confidence leading up to and fol-
lowing the election of President Trump. This is con-
sistent with existing theories of the partisan sources
of confidence. We provide estimation of selective IRFs
in Supplement. In general, as economic confidence di-
minishes, respondents are more inclined to disagree
that economic conditions are improving, and they have
reduced expectations for savings.

ACC FORECASTING HORIZON
MODEL 1 month 6 months 12 months
OURS 0.597+0.005 0.665+0.008 0.572+0.005
DO-IRT 0.57340.006 0.604+0.007 0.538+0.007
LL FORECASTING HORIZON
MODEL 1 month 6 month 12 month
OURS —1.003+0.008 —0.916+0.008 —1.074+0.013
DO-IRT  —1.144+0.025 —0.957+0.021  —1.276+0.024

Table 2: Predictive accuracy and log likelihood of GD-
GPIRT and DO-IRT in predicting future responses at various
forecasting horizons. GD-GPIRT significantly outperforms
DO-IRT for the majority of forecasting horizons.

In order to assess the predictive capabilities of GD-
GPIRT with respect to future responses, we conducted
an additional forecasting analysis focused on out-of-
sample predictions of actual responses. Specifically,
we first estimate confidence levels of each individual
based on data spanning from 2014 to 2017, and then

extrapolate their confidence levels in 2018. We then
hold out 20% of distinct individuals for every ques-
tion, leverage the remaining 80% of observations to
estimate IRFs and predict their future responses from
the extrapolated confidence levels across multiple fore-
casting horizons ranging from 1 to 12 months. Table
2 shows the predictive accuracy and log likelihood of
GD-CPIRT and DO-IRT in forecasting future responses
at various horizons. Our findings show that GD-GPIRT
significantly outperforms DO-IRT for the majority of
forecasting horizons, suggesting effectiveness of GD-
GPIRT in modeling the trajectories of confidence levels
and its superiority in measurement quality.

5.3 Ideology of Senate on Abortion

Ideology or the configuration of interconnected be-
liefs and attitudes (Converse, 2006), plays a central
role in understanding congressional dynamics such as
political polarization and partisan sorting (Poole and
Rosenthal, 2001; Fiorina et al., 2008). Scaling congres-
sional votes to ideology faces challenges in accommo-
dating temporal changes while ensuring comparability,
as politicians have demonstrated substantial shifts in
their views over time (CNN, 2019, 2022). However,
previous studies often simplified complex ideology tra-
jectories with linear models or low order polynomials
(Poole and Rosenthal, 2001; Bailey, 2007, 2013).

We run GD-GPIRT to estimate the U.S. Senate’s ide-
ology over multiple congressional sessions, using roll-
call voting data obtained from the voteview database
(Lewis et al., 2019). We focus on votes related to
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Figure 3: 1rFs of four selected roll call votes in the U.S. Senate on abortion issues between the 92th to 108th Congress
that are standard, asymmetric, non-saturate and non-monotonic. Estimated probability of voting “yea” is plotted against

ideology score x. Actual “yea” and “nay” roll-call votes are displayed as red and black vertical dashes.

abortion as identified in Montgomery (2011), result-
ing in 758k total votes of 235 Senators spanning over
20 years. We set ¢, = 6, the maximum-a-posterior
estimate from a simple GP model of NOKKEN—POOLE
scores (Nokken and Poole, 2004) against time.

Our findings reveal a clear and noticeable pattern
of increasing partisan polarization within the United
States Congress on abortion issues. In Figure 2, the
upper panel illustrates the alignment between sena-
tors’ estimated ideology and their party affiliations,
denoted as ’polarization ratio’, on abortion issues un-
der GD-GPIRT. The increase in the ratio from the 92nd
Congress (0.521) to the 108th Congress (0.950) indi-
cates the growing partisan divide on abortion. The
lower panel displays GD-GPIRT scores by party spaced
every two sessions, with Dem. and Rep. Senators in
blue and red, respectively. Dashed lines represent the
evolving ideological trajectories of selected senators.
The prominent party divide emerging in the 1990s
underscores the partisan sorting related to abortion,
aligned with prior research (Brady and Schwartz, 1995;
Adams, 1997). Furthermore, GD-GPIRT is capable of
inferring IRFs beyond standard logistic shapes. Figure
3 shows IRFs for four selected roll call votes in the US
Senate between the 92th to 108th Congress. The esti-
mated probability of voting “yea” is plotted against
the ideology score x. The actual “yea” and “nay”
roll-call votes are displayed as red and black vertical
dashes. From left to right, these IRFs are either stan-
dard, asymmetric, non-monotonic, or non-saturate (do
not approach zero or one).

Table 3: Comparison of in-sample model fits between
GD-CGPIRT and baselines for binary roll-call vote data.

L/N Acc AUC
GD-GPIRT —0.160 0.930 0.930
DO-IRT —0.402 0.825 0.818
NOKKEN-POOLE —0.557 0.733 0.730

We also assess the predictive performance of GD-GPIRT
regarding actual votes. Table 3 shows the comparison
of in-sample model fits between GD-GPIRT and base-
lines for binary roll-call vote data. On average, GD-
GPIRT correctly predicts 93% of the votes, which is
significantly higher than prediction from DO-IRT and
NOKKEN—POOLE scores. Besides, GD-GPIRT outper-
forms baselines in averaged log likelihood and area un-
der the receiver operating characteristic curve (AUC).

6 CONCLUSION

We propose GD-GPIRT, the first dynamic Bayesian
non-parametric measurement model for longitudinal
categorical observations, to estimate dynamic latent
traits while making minimal assumptions about shapes
of the response functions. We validate GD-GPIRT and
the sampler in simulation studies, and demonstrate its
superiority in both model fit and measurement qual-
ity against baselines. Lastly, we apply GD-GPIRT to
address substantive problems, including assessing pub-
lic opinions on economy environment and estimating
trends in congressional ideology leaning on abortion.

We see potentials of GD-GPIRT in the advancement
of IRT in several ways. Firstly, GD-GPIRT can be ex-
tended to model multi-dimensional latent traits, which
is particularly relevant in fields such as political sci-
ence where traits like the Big Five personality traits
(Gerber et al., 2011) and the 2-d NOMINATE scores
(Poole and Rosenthal, 2001) are essential. In addi-
tion, by clustering models such as mixtures of GPs
with Dirichlet process prior, the conditional indepen-
dence assumption among individual traits may be fur-
ther relaxed when certain participating units naturally
form subgroups. Finally, although the MCMC sampling
method technique has proven sufficient in our exper-
iments, one may emplore other Bayesian variational
techniques for inference in GD-GPIRT.
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(¢) (Optional) Anonymized source code, with
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external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
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(b) Complete proofs of all theoretical results.
[Not Applicable]

(¢) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. TIf you are using existing assets (e.g., code, data,
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(a) Citations of the creator If your work uses ex-
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(b) The license information of the assets, if ap-
plicable. [Yes]
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(d) Information about consent from data
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(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes]
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